Vamos, agora, considerar o método de Heun, que pode ser visto como um ajuste do método de Euler, fazendo uma correção na previsão inicial do método de Euler. Nesse sentido, ele é visto como um método do tipo previsor-corretor. Ele também se enquadra na formulação geral de métodos do tipo Runge-Kutta explícitos.
No caso de uma equação diferencial ordinária
dtdx=f(t,x),
a partir de uma aproximação xj−1 da solução x(tj−1) em um instante tj−1, lembramso que o método de Euler nos dá a aproximação xj=x(tj−1)+Δxj no instante tj=tj−1+Δt através de
ΔtΔxj=f(tj−1,xj−1),
ou seja,
xj=xj−1+Δtf(tj−1,xj−1).
No método de Heun, usamos esse mesmo valor como uma previsão inicial
x~j=xj−1+Δtf(tj−1,xj−1)
e, em seguida, tomamos a média dos passos que seriam obtidos usando-se as inclinações f(tj−1,xj−1), em tj−1, e f(tj,x~j), em tj:
O método de Euler é um método de ordem um, enquanto que o método de Heun é um método de ordem dois. Mas isso depende da regularidade da função f(t,x), tanto no contexto determinístico como no contexto de equações aleatórias. Para uma equação aleatória definida em termos de um processo de Wiener, esperamos uma regularidade temporal do tipo Hölder com expoente 1/2, nos levando a uma convergência forte de ordem 1.5.
Ilustramos, a seguir, essa dependência da ordem de convergência na regularidade do processo {Yt}t≥0.
Vamos considerar, para efeito de ilustração, a equação
dtdXt=−μ(1+Yt)Xt,
com diferentes processos estocásticos {Yt}t≥0, variando a regulardiade dos seus caminhos amostrais.
Mais precisamente, dado θ>0, consideramos
Yt=sin(2πUt)θcos(2πUt),
onde
U∼Unif(0,1).
Observe que, para cada frequência amostrada U(ω)=ω∈[0,1), obtemos um caminho amostral
Yt(ω)=sin(2πωt)θcos(2πωt),t∈R.
Esses caminhos são integráveis no tempo, com primitiva
Zt(ω)=2πω(1+θ)1sin(2πωt)1+θ.
Esses caminhos nos dão, de fato, o processo {Zt}t≥0 dado por
Zt=2π(1+θ)U1sin(2πUt)1+θ.
Obtemos a solução exata da equação diferencial aleatória explicitamente em termos desse processo estocástico:
Xt=X0e−μ(t+Zt).
Com a solução exata em mãos, usamos o método de Monte-Carlo para resolver a equação pelos esquemas de Euler e de Heun, para um certo número M∈N de amostras do processo de Wiener, obtendo caminhos amostrais {Xjn(ωm)}j=1n. Ao final, podemos estimar o erro forte via
onde o valor esperado é tomado em relação às amostras ω1,…,ωM.
Nas simulações abaixo, fixamos os valores de μ,T,M e variamos o valor do parâmetro de regularidade θ, para ilustrar os efeitos da regularidade na ordem de convergência. Fazemos uma regressão linear de mínimos quadrados nos (Δtn,enforte) para encontrar ln(C) e a ordem de convergência p tais que
ln(enforte)≈ln(C)+pln(Δtn),
de modo que
enforte≈CΔtnp,
correspondendo a uma taxa de convergência da ordem de Δtp.
Como os caminhos amostrais são relativamente bem comportados, não é necessário tomarmos um número grande amostras para visualizarmos a taxa correta de convergência.
Primeiramente, observe que, nesse caso, a regularidade não afeta a ordem de convergência do método de Euler, que é sempre um. Isso segue do fato dos caminhos amostrais da solução serem continuamente diferenciáveis.
Já o método de Euler precisa de regularidade suficiente da solução para apresentar o sua maior taxa de convergência, que é dois. Nos dois casos θ=1 e θ=2, há regularidade suficiente da solução (duas vezes continuamente diferenciável), de modo que a ordem de convergência é dois
Agora, para θ=2/3 e θ=1/3, a ordem de convergência é menor, sendo respectivamente 5/3 e 4/3. Em geral, se t↦f(t,x,Yt) é Hölder contínua em t, para x fixo, com expoente 0<θ<1, então os caminhos amostrais da solução são de classe C1+θ, ou seja, continuamente diferenciáveis, com derivada Hölder contínua com expoente θ. Nesse caso, a ordem de convergência do método é 1+θ.