In May 16, 2018, I participated in the Pint of Science Brasil, which is the Brazilian version of the Pint of Science. This is a worldwide Festival in which Science is brought to the main public through discussions in selected bars and restaurants in the participating cities. The festival occurs once a year, always in May. My participation was together with Prof. Marcelo Viana (IMPA), on how Mathematics is behind the Science and Art of a good beer: "Dois chopes e senta que lá vem história: como a matemática está por trás da ciência e da arte da boa cerveja".
I am also the author of the blog Cervejarte, on which I write about beer production, particularly from the homebrewing perspective. It is more a hobby than a Mathematics outreach activity, but some of the posts are more technical, with more involved mathematical details, and which are presented in a form accessible to a more general audience.
De Oliveira, M; Bertho, A. C. S.; Costa, B.; Somerlatte Silva, F.; Alves, M. B.; Ramos Ramirez, M.; Borges, R. B. R.; Marques, R.; Rosa, R. M. S.; Peregrino, R. L.; Lobo, V. G. R; Fonseca, T. C. O.. BR-EMS 2021 life table for the Brazilian insured population. Revista Brasileira de Estudos de População - REBEP, v. 40 (2023), p. 1–24. (DOI: 10.20947/s0102-3098a0252)
Becker, R. A.; Bercovici, H.; Biswas, A.; Cheskidov, A.; Constantin, P.; Eden, A.; Frazho, A.; Jolly, M.; Kukavica, I.; Pearcy, C.; Rosa, R. M. S.; Saut, J.-C.; Tannenbaum, A.; Temam, R.; Titi, E.; Voiculescu, D.. Remembrances of Ciprian Ilie Foias. American Mathematical Society. Notices, v. 69 (2022), p. 1529–1545. (DOI: 10.1090/noti2545)
Rosa, Ricardo M. S.; Temam, Roger M. Optimal minimax bounds for time and ensemble averages for the incompressible Navier-Stokes equations. Pure Appl. Funct. Anal. 7 (2022), no. 1, 327–355. (MR4396263)
Foias, Ciprian; Rosa, Ricardo M. S.; Temam, Roger M.; Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 31 (2019), no. 3, 1689–1741. (DOI:10.1007/s10884-018-9719-2)
Cipolatti, R. A.; Liu, I.-S.; Palermo, L. A.; Rincon, M. A.; Rosa, R. M. S.; On the existence, uniqueness and regularity of solutions of a viscoelastic Stokes problem modelling salt rocks, Appl. Math. Optim., 78 (2018), no. 2, 403–456. (DOI:10.1007/s00245-017-9411-7)
Cipolatti, R.; Liu, I.-S.; Palermo, L. A.; Rincon, M. A.; Rosa, R. M. S.; A boundary value problem arising from nonlinear viscoelasticity: Mathematical analysis and numerical simulations, Appl. Math. Comput., 335 (2018), 237–247. (DOI:10.1016/j.amc.2018.04.034)
Bronzi, A. C.; Mondaini, C. F.; Rosa, R. M. S.; Abstract framework for the theory of statistical solutions, J. Differential Equations, 260 (2016), no. 12, 8428–8484. (DOI:10.1016/j.jde.2016.02.027)
Foias, Ciprian; Rosa, Ricardo M. S.; Temam, Roger M.; Convergence of time averages of weak solutions of the three-dimensional Navier-Stokes equations, J. Stat. Phys., 160 (2015), no. 3, 519–531. (DOI:10.1007/s10955-015-1248-3)
Bronzi, Anne C.; Mondaini, Cecilia F.; Rosa, Ricardo M. S.; Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems, SIAM J. Math. Anal., 46 (2014), no. 3, 1893–1921. (DOI:10.1137/130931631)
Bronzi, Anne; Rosa, Ricardo; On the convergence of statistical solutions of the 3D Navier-Stokes- model as vanishes, Discrete Contin. Dyn. Syst., 34 (2014), no. 1, 19–49. (DOI:10.3934/dcds.2014.34.19)
Foias, Ciprian; Rosa, Ricardo M. S.; Temam, Roger; Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 63 (2013), no. 6, 2515–2573.
Foias, Ciprian; Rosa, Ricardo; Temam, Roger; Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, Discrete Contin. Dyn. Syst., 27 (2010), no. 4, 1611–1631. (DOI:10.3934/dcds.2010.27.1611)
Balci, Nusret; Foias, Ciprian; Jolly, Michael S.; Rosa, Ricardo; On universal relations in 2-D turbulence, Discrete Contin. Dyn. Syst., 27 (2010), no. 4, 1327–1351. (DOI:10.3934/dcds.2010.27.1327)
Foias, Ciprian; Rosa, Ricardo M. S.; Temam, Roger; A note on statistical solutions of the three-dimensional Navier-Stokes equations: the stationary case, C. R. Math. Acad. Sci. Paris, 348 (2010), no. 5-6, 347–353. (DOI:10.1016/j.crma.2009.12.018)
Foias, Ciprian; Rosa, Ricardo M. S.; Temam, Roger; A note on statistical solutions of the three-dimensional Navier-Stokes equations: the time-dependent case, C. R. Math. Acad. Sci. Paris, 348 (2010), no. 3-4, 235–240. (DOI:10.1016/j.crma.2009.12.017)
Rosa, Ricardo M. S.; Theory and applications of statistical solutions of the Navier-Stokes equations, in Partial differential equations and fluid mechanics, pp. 228–257, Cambridge Univ. Press, Cambridge, 2009.
Ramos, F.; Rosa, R.; Temam, R.; Statistical estimates for channel flows driven by a pressure gradient, Phys. D, 237 (2008), no. 10-12, 1368–1387. (DOI:10.1016/j.physd.2008.03.013)
Dieci, L.; Jolly, M. S.; Rosa, R.; Van Vleck, E. S.; Error in approximation of Lyapunov exponents on inertial manifolds: the Kuramoto-Sivashinsky equation, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), no. 3-4, 555–580. (DOI:10.3934/dcdsb.2008.9.555)
Rosa, Ricardo M. S.; Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), no. 1, 257–269. (DOI:10.1016/j.jde.2006.03.004)
Foias, C.; Jolly, M. S.; Manley, O. P.; Rosa, R.; Temam, R.; Kolmogorov theory via finite-time averages, Phys. D, 212 (2005), no. 3-4, 245–270. (DOI:10.1016/j.physd.2005.10.002)
Jolly, M. S.; Rosa, R.; Computation of non-smooth local centre manifolds, IMA J. Numer. Anal., 25 (2005), no. 4, 698–725. (DOI:10.1093/imanum/dri013)
Cabral, M.; Rosa, R.; Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), no. 3-4, 265–278. (DOI:10.1016/j.physd.2004.01.023)
Moise, Ioana; Rosa, Ricardo; Wang, Xiaoming; Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dyn. Syst., 10 (2004), no. 1-2, 473–496. (DOI:10.3934/dcds.2004.10.473)
Cabral, Marco; Rosa, Ricardo; Temam, Roger; Existence and dimension of the attractor for the Bénard problem on channel-like domains, Discrete Contin. Dyn. Syst., 10 (2004), no. 1-2, 89–116.
Rosa, Ricardo; Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation, J. Dynam. Differential Equations, 15 (2003), no. 1, 61–86. (DOI:10.1023/A:1026153311546)
Foias, C.; Jolly, M. S.; Manley, O. P.; Rosa, R.; On the Landau-Lifschitz degrees of freedom in 2-D turbulence, J. Statist. Phys., 111 (2003), no. 3-4, 1017–1019. (DOI:10.1023/A:1022814702548)
Rosa, Ricardo M. S.; Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence, Appl. Math., 47 (2002), no. 6, 485–516. (DOI:10.1023/A:1023297721804)
Goubet, Olivier; Rosa, Ricardo M. S.; Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), no. 1, 25–53. (DOI:10.1006/jdeq.2001.4163)
Foias, C.; Jolly, M. S.; Manley, O. P.; Rosa, R.; Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence, J. Statist. Phys., 108 (2002), no. 3-4, 591–645. (DOI:10.1023/A:1015782025005)
Foias, Ciprian; Manley, Oscar P.; Rosa, Ricardo M. S.; Temam, Roger; Estimates for the energy cascade in three-dimensional turbulent flows, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), no. 5, 499–504. (DOI:10.1016/S0764-4442(01)02008-0)
Foias, Ciprian; Manley, Oscar P.; Rosa, Ricardo M. S.; Temam, Roger; Cascade of energy in turbulent flows, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), no. 6, 509–514. (DOI:10.1016/S0764-4442(01)01831-6)
Jolly, M. S.; Rosa, R.; Temam, R.; Accurate computations on inertial manifolds, SIAM J. Sci. Comput., 22 (2000), no. 6, 2216–2238. (DOI:10.1137/S1064827599351738)
Rosa, Ricardo; The global attractor of a weakly damped, forced Korteweg-de Vries equation in , Mat. Contemp., 19 (2000), 129–152.
Jolly, M. S.; Rosa, R.; Temam, R.; Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky equation, Adv. Differential Equations, 5 (2000), no. 1-3, 31–66.
Moise, Ioana; Rosa, Ricardo; Wang, Xiaoming; Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), no. 5, 1369–1393. (DOI:10.1088/0951-7715/11/5/012)
Rosa, Ricardo; The global attractor for the D Navier-Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), no. 1, 71–85. (DOI:10.1016/S0362-546X(97)00453-7)
Rosa, Ricardo; Temam, Roger; Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, in Foundations of computational mathematics (Rio de Janeiro, 1997), pp. 382–391, Springer, Berlin, 1997.
Moise, I.; Rosa, R.; On the regularity of the global attractor of a weakly damped, forced Korteweg-de Vries equation, Adv. Differential Equations, 2 (1997), no. 2, 257–296.
Rosa, Ricardo; Temam, Roger; Inertial manifolds and normal hyperbolicity, Acta Appl. Math., 45 (1996), no. 1, 1–50. (DOI:10.1007/BF00047882)
Castañeda, Nelson; Rosa, Ricardo; Optimal estimates for the uncoupling of differential equations, J. Dynam. Differential Equations, 8 (1996), no. 1, 103–139. (DOI:10.1007/BF02218616)
Rosa, Ricardo; Approximate inertial manifolds of exponential order, Discrete Contin. Dynam. Systems, 1 (1995), no. 3, 421–448. (DOI:10.3934/dcds.1995.1.421)
Rosa, Ricardo; Conjugacy of strongly continuous semigroups generated by normal operators, J. Dynam. Differential Equations, 7 (1995), no. 3, 471–490. (DOI:10.1007/BF02219373)
Foias, C.; Manley, O.; Rosa, R.; Temam, R.; Navier-Stokes equations and turbulence, Cambridge University Press, Cambridge, 2001.
Rosa, Ricardo Martins da Silva; Attractors for weakly dissipative equations. Inertial manifolds and normal hyperbolicity. Approximate inertial manifolds of exponential order, Thesis (Ph.D.)–Indiana University, ProQuest LLC, Ann Arbor, MI, 1996.