Alometry law for the Nile Tilapia

nile tilapia

(image from Fishsource)

We use the alometry law $y = A x^B$ to correlate the length $x$ of the fish tilapia with its mass $y$. The following table for the length-weight relationship of growing-finishing cage-farmed Nile tilapia (Oreocromis niloticus)is provided in the article T. S. de Castro Silva, L. D. dos Santos, L. C. R. da Silva, M. Michelato, V. R. B. Furuya, W. M. Furuya, Length-weight relationship and prediction equations of body composition for growing-finishing cage-farmed Nile tilapia, R. Bras. Zootec. vol.44 no.4 Viçosa Apr. 2015):

Days of culture120406080100
Mass (g)28.6 ± 4.288.6 ± 1.4177.6 ± 3.6313.8 ± 12.8423.7 ± 12.7774.4 ± 23.6
Length (cm)10.9±0.415.3±0.419.1±0.222.8±0.526.3±0.631.3±0.4

We use Turing.jl with the compound model

\[ \begin{align*} A & \sim \mathrm{InverseGamma}(\alpha_A, \beta_A) \\ B & \sim \mathrm{InverseGamma}(\alpha_B, \beta_B) \\ \sigma^2 & \sim \mathrm{InverseGamma}(2, 1) \\ y & \sim \mathrm{Normal}(A x^B, \sigma^2) \end{align*}\]

with suitable hyperparameters $(\alpha_A, \beta_A)$ and $(\alpha_B, \beta_B)$ to be chosen shortly.

We start by loading the necessary packages:

using Distributions, Turing, StatsPlots

Then we collect the adimensionalized data in vector form and plot it for the fun of it:

xx = [10.9, 15.3, 19.1, 22.8, 26.3, 31.3]
yy = [28.6, 88.6, 177.6, 313.8, 423.7, 774.4]

scatter(xx, yy, xlabel="Body length (cm)", ylabel="Body weight (g)", xlims=(0.0, 35.0), ylims=(0.0, 1000.0), title="Length-weight relationship of growing-finishing cage-farmed Nile tilapia", titlefont=10, legend=nothing)
Example block output

We define the Turing.jl model with parameters $A$ and $B$ as Inverse Gamma functions with hyperparameters Ah = (Ah.α, Ah.β) and Bh=(Bh.α, Bh.β).

@model function alometry(x, q; Ah, Bh)
    A ~ InverseGamma(Ah.α, Ah.β)
    B ~ InverseGamma(Bh.α, Bh.β)
    σ² ~ InverseGamma(2, 1)
    σ = sqrt(σ²)

    for i in eachindex(x)
        y = A * x[i] ^ B
        q[i] ~ Normal(y, σ)
    end
end
alometry (generic function with 2 methods)

As in any nonlinear optimization problem, the starting point is crucial. Here, the starting point is our prior. The following prior does not work properly, as we can see.

model = alometry(xx, yy; Ah=(α=1,β=1), Bh=(α=1,β=1))
chain = sample(model, NUTS(0.65), 1_000)
Chains MCMC chain (1000×17×1 Array{Float64, 3}):

Iterations        = 501:1:1500
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 5.14 seconds
Compute duration  = 5.14 seconds
parameters        = A, B, σ²
internals         = n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, lp, logprior, loglikelihood

Use `describe(chains)` for summary statistics and quantiles.
plt = scatter(xx, yy, xlabel="Body length (cm)", ylabel="Body weight (g)", xlims=(0.0, 35.0), ylims=(0.0, 1000.0), title="Length-weight relationship of growing-finishing cage-farmed Nile tilapia", titlefont=10, legend=nothing)
xxx = range(0.9*first(xx), 1.1*last(xx), length=200)
yyy = mean(chain, :A) * xxx .^ mean(chain, :B)
plot!(plt, xxx, yyy)
Example block output

If we start with a more informative prior, we get a suitable result. If we pick two data points $(x_1, y_1)$ and $(x_2, y_2)$, assuming $y \approx Ax^B$, we have $y_2/y_1 = (x_2/x_1)^B$, so that

\[ B = \frac{\ln(y_2/y_1)}{\ln(x_2/x_1)}.\]

If we choose the second and third points, we get

    B = log(yy[3]/yy[2])/log(xx[3]/xx[2])
3.1347640575458167

From that, we can also estimate $A$ from $A = y/x^B$, so that, choosing the second point

    A = yy[2]/xx[2]^B
0.017127958628527618

With that in mind, we choose the hyperparameters for the prior as $(\alpha_A, \beta_A) = (57, 1)$, with mean $1/(57+1) \approx 0.017$, and $(\alpha_B, \beta_B) = (1, 6)$, with mean $6/(1+1) = 3.0$.

model = alometry(xx, yy; Ah=(α=57,β=1), Bh=(α=1,β=6))
DynamicPPL.Model{typeof(Main.alometry), (:x, :q), (:Ah, :Bh), (), Tuple{Vector{Float64}, Vector{Float64}}, Tuple{@NamedTuple{α::Int64, β::Int64}, @NamedTuple{α::Int64, β::Int64}}, DynamicPPL.DefaultContext}(Main.alometry, (x = [10.9, 15.3, 19.1, 22.8, 26.3, 31.3], q = [28.6, 88.6, 177.6, 313.8, 423.7, 774.4]), (Ah = (α = 57, β = 1), Bh = (α = 1, β = 6)), DynamicPPL.DefaultContext())

With this prior, we attempt again to fit the model.

# chain = sample(model, HMC(0.05, 10), 4_000) # HMC seems quite unstable here
chain = sample(model, NUTS(0.65), MCMCSerial(), 1000, 3; progress=false)
Chains MCMC chain (1000×17×3 Array{Float64, 3}):

Iterations        = 501:1:1500
Number of chains  = 3
Samples per chain = 1000
Wall duration     = 4.68 seconds
Compute duration  = 4.47 seconds
parameters        = A, B, σ²
internals         = n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, lp, logprior, loglikelihood

Use `describe(chains)` for summary statistics and quantiles.

Here is the result of the chain.

plot(chain)
Example block output

Taking the mean of the parameters $A$ and $B$ we plot the fitted curve.

plt = scatter(xx, yy, xlabel="Body length (cm)", ylabel="Body weight (g)", xlims=(0.0, 35.0), ylims=(0.0, 1000.0), title="Length-weight relationship of growing-finishing cage-farmed Nile tilapia", titlefont=10, legend=nothing)
xxx = range(0.9*first(xx), 1.1*last(xx), length=200)
yyy = mean(chain, :A) * xxx .^ mean(chain, :B)
plot!(plt, xxx, yyy)
Example block output

This seems successful. Now we compute the 95% credible interval

quantiles = reduce(
    hcat,
    quantile(
        [
            A * x^B for (A, B) in eachrow(view(chain.value.data, :, 1:2, 1))
        ],
        [0.025, 0.975]
        )
    for x in xxx
)
2×200 Matrix{Float64}:
 19.8623  20.6656  21.491   22.3339  23.1838  …   970.215   980.92   991.704
 22.9727  23.8628  24.7756  25.7032  26.6438     1059.27   1071.33  1083.47

and plot it along the data:

plt = plot(xlabel="Body length (cm)", ylabel="Body weight (g)", xlims=(0.0, 35.0), ylims=(0.0, 1000.0), title="Length-weight relationship of growing-finishing cage-farmed Nile tilapia", titlefont=10, legend=nothing)
plot!(plt, xxx, yyy, ribbon=(yyy .- view(quantiles, 1, :), view(quantiles, 2, :) .- yyy), label="Bayesian fitted line", color=2)
scatter!(plt, xx, yy, color=1)
Example block output

We end this section plotting an ensemble of lines generated with the chain.

plt = plot(xlabel="Body length (cm)", ylabel="Body weight (g)", xlims=(0.0, 35.0), ylims=(0.0, 1000.0), title="Length-weight relationship of growing-finishing cage-farmed Nile tilapia", titlefont=10, legend=nothing)
plot!(plt, xxx, yyy, label="Bayesian fitted line", color=2)
for (a, b) in eachrow(view(chain.value.data, :, 1:2, 1))
    plot!(plt, xxx, a .* xxx .^b, alpha=0.01, color=2, label=false)
end
scatter!(plt, xx, yy, color=1)
Example block output