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Figure : counterrotating vortex pair in real life
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Euler equations

Euler Equations for incompressible, non-viscous (ideal) fluid flow:

∂tu + (u · ∇)u = −∇p,
div u = 0,

lim
|x |→∞

u(·, x) = 0,

u(t = 0) = u0,

wher u is the velocity and p is the scalar pressure of the flow.
We introduce the vorticity ω = curl u. In general, the velocity u can be
expressed in terms of ω by the Biot-Savart law, which in operator form
we write as u = K [ω].
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Vorticity formulation

The vorticity formulation of the Euler equations is obtained by taking
the curl of the velocity equations. In 2D we get:{

∂tω + u · ∇ω = 0,
u = K [ω].

Biot-Savart law: If the fluid domain is R2 then K [ω] = K ∗ ω with

K (x) =
x⊥

2π |x |2
=

(−x2, x1)

2π |x |2
.
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Known results in R2

McGrath 1968: u0 smooth (Hs(R2), s > 2) then ∃, !, continuous
dependence.

Yudovich 1963: ω0 ∈ L∞ in a bounded domain then ∃ and !.
Extended to include L1 ∩ L∞(R2) by Majda (1982). Proofs yield
continuous dependence as well. Extended to slightly unbounded
vorticities by Yudovich (1995) and Vishik (1999).

Existence of weak solutions for initial vorticities in BM+
c ∩ H−1

loc by
Delort (1990) and for certain reflection symmetric changing-sign
data by L., Nussenzveig Lopes and Xin (2001). Nonuniqueness in
the context of wild solutions by Dellelis and Szekelyhidi (2011).
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Examples
Point vortices: ω =

∑
j mjδ(x − Pj). Hence,

u = u(t , x) =
∑
`

m`K (x − P`) =
∑
`

m`
(x − P`)⊥

|x − P`|2
.

Ṗj =
∑
` 6=j

m`K (Pj − P`).

Vortex patches: ω = mχD, D = D(t). Hence,

u = u(t , x) =

∫
D(t)

mK (x − y) dy .

Dynamics is described by the evolution of ∂D(t). If
∂D0 ∈ C1,γ ⇒ ∂D(t) ∈ C1,γ . Chemin’s Theorem, 1993.
Vortex sheets: ω0 = γ0δC0 , where C0 is a curve in the plane.
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Steady solutions
Any circularly symmetric vorticity configuration ω(x) = W (|x |) is a
stationary solution of the Euler equations.

Any solution of the nonlinear eigenvalue problem ∆ψ = F (ψ), for
arbitrary F gives rise to a stationary solution with u = ∇⊥ψ and
ω = ∆ψ.
Point vortex pairs - a pair of point vortices rotate around their
center of vorticity, which reduces to translating with constant
speed in the mirror symmetric case.
Other steady point vortex configurations - vortex street and
polygonal vortex array,
Lamb’s circular vortex.
Kirchhoff’s Ellipse
etc. There are a lot of steady solutions - coherent states.

Steady x stationary - stationary means time-independent solution;
steady means stationary modulo the action of the group of rigid
motions.
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Orbital stability

Orbital stability: appropriate notion of stability for non-dissipative
systems. For each initial state ω0 let ω = ω(t) be the evolution of our
system with initial data ω0.

Orbital stabilty of stationary states: Fix ω∗ a stationary state. It is
orbitally stable if for every ε > 0 there exists a δ > 0 such that
dist(ω0, ω∗) < δ implies supt>0 dist(ω(t)− ω∗) < ε.

Orbital stability of steady states: More complicated - fix ω∗ = ω∗(t) a
steady state. Denote O = {ω∗(t), t ∈ R} the orbit of ω∗. The state ω∗ is
orbitally stable if for every ε > 0 there exists a δ > 0 such that
dist(ω0,O) < δ implies supt>0 dist(ω(t)−O) < ε.
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Orbital stability

Example: The simple pendulum - equilibrium at the bottom is a stable
stationary state; equilibrium at the top is unstable.

Friends of the orbital stability: potential wells, Liapunov functions.

Enemies of the orbital stability: hamiltonian ressonances - small
disruptive effects that build up over time; small denominators.

Domain of KAM theory

Milton C. Lopes Filho (IM-UFRJ) Nonlinear stability of vortex pairs April 19, 2013 9 / 20



Orbital stability

Example: The simple pendulum - equilibrium at the bottom is a stable
stationary state; equilibrium at the top is unstable.

Friends of the orbital stability: potential wells, Liapunov functions.

Enemies of the orbital stability: hamiltonian ressonances - small
disruptive effects that build up over time; small denominators.

Domain of KAM theory

Milton C. Lopes Filho (IM-UFRJ) Nonlinear stability of vortex pairs April 19, 2013 9 / 20



Orbital stability

Example: The simple pendulum - equilibrium at the bottom is a stable
stationary state; equilibrium at the top is unstable.

Friends of the orbital stability: potential wells, Liapunov functions.

Enemies of the orbital stability: hamiltonian ressonances - small
disruptive effects that build up over time; small denominators.

Domain of KAM theory

Milton C. Lopes Filho (IM-UFRJ) Nonlinear stability of vortex pairs April 19, 2013 9 / 20



Orbital stability

Example: The simple pendulum - equilibrium at the bottom is a stable
stationary state; equilibrium at the top is unstable.

Friends of the orbital stability: potential wells, Liapunov functions.

Enemies of the orbital stability: hamiltonian ressonances - small
disruptive effects that build up over time; small denominators.

Domain of KAM theory

Milton C. Lopes Filho (IM-UFRJ) Nonlinear stability of vortex pairs April 19, 2013 9 / 20



History - XIX century view

Rayleigh’s criterion - flows of the form (u(x2),0) on an infinite straight
horizontal channel (which are always stationary) are linearly stable if
and only if the velocity profile has no inflection point.

Basic tool - finding eigenvalues of the linearization
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History - Arnold’s Theorem

Theorem
(Arnold 65) Let Ω be a smooth bounded domain in the plane and let u∗
be a C3 stationary solution of the Euler equations in Ω. Suppose that
there exists c1, c2 > 0 such that one of the two conditions hold:

1

c1 ≤ −
u∗
∇⊥ω∗

≤ c2

2

c1 ≤
u∗
∇⊥ω∗

≤ c2,

with c1 big enough (wrt lowest eingenvalue of Laplacian),
then u∗ is stable with respect to the norm ‖u‖L2 + ‖ω‖L2 .

Basic tool - find a potential well
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History - extending Arnold’s result
Basic avenues:

Relax regularity condition on the stationary solution on bounded
domains, ultimately to include vortex patches (Burton 2005);
approach based on Kelvin’s variational principle - extrema of the
kinetic energy within rearrangement classes of vorticity are stable.

Relax boundedness of the domain - go to full space (Wan and
Pulvirenti 85) nonlinear stability in ‖ω‖L1 for circular vortex patches
and monotone decreasing circularly symmetric vorticity
configurations in the plane, using the moment of inertia∫

|x |2ω(t)dx ,

a conserved quantity.
Go for steady, instead of stationary vorticity configurations - full
space, adapting Burton’s techniques with Kelvin’s variational
principle - subject of this talk, Burton, L2, 2013.
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History - Counterrotating vortex pairs

CVP - solutions of 2D Euler, vorticity odd with respect to the x2
variable, propagating with constant speed along the x1-axis.

first studied by Pocklington, 1895.
Existence proved by Norbury (1975), Yang (1991) as solutions to
nonlinear eigenvalue problem (smooth case) and by Burton
(1988) by minimization of kinetic energy within rearrangement
classes of vorticity - vast family of examples, at least one in each
rearrangement class.
Numerical (Overman and Zabuski, 1982) and experimental (Duc
and Sommeria, 1988) work on vortex pairs.
Stability of vortex pairs observed in experiments, formally studied
by Pierrehumbert (1980) conjectured by Saffman (1995).
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Rearrangement classes

Definition
Let Π = {x2 > 0}, the upper half-plane. For ω ∈ L1(Π) we define the
distribution function λω = λω(s) = |{x ∈ Π : |ω(x)| > s}|. We say that
two functions ω1 and ω2 are rearrangements if λω1 = λω2 a.e.. We
denote by R(ω) the set of all functions in L1(Π) which are
rearrangements of ω. We denote by R(ω) the closure of R(ω) with
respect to the weak topology of L2(Π).

Remark 1: Euler evolution preserves the rearrangement class.
Remark 2: The set R(ω) is much larger than R(ω), in particular, it is
convex (Douglas, 94).

Milton C. Lopes Filho (IM-UFRJ) Nonlinear stability of vortex pairs April 19, 2013 14 / 20



Variational principle

For ω ∈ L1
c(Π) we define ω̃ the odd extension of ω to the full plane, and

u = K ∗ ω̃ the flow velocity associated with ω̃. We define

E [ω] ≡
∫

Π
|u|2dx and I[ω] ≡

∫
Π

x2ωdx .

We will look for stable vortex pairs among maximizers of the functional
E − λI on rearrangement classes. This is an adaptation of Kelvin’s
variational principle to this context.
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Main Theorem

We introduce the norm ‖ω‖Y = ‖ω‖L2 + |I[ω]|.

Theorem
(Burton, L2,2013) Let ω0 be a nonnegative function in Lp(Π)c , for
2 < p ≤ ∞ and fix λ > 0. Let Σλ denote the set of maximizers of
E − λI on R(ω0). Assume that ∅ 6= Σλ ⊆ R(ω0). Then Σλ is orbitally
stable in the following sense. For every ε > 0 and A > | supp(ω0)| there
exists a δ > 0 such that any Euler trajectory ω = ω(t) with ω(0)
nonnegative, compactly supported, | supp(ω(0))| < A and the
Y-distance between ω(0) and Σλ is less than δ then the L2 distance
between ω(t) and Σλ is less than ε forever.
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Observations

1 Σλ is always nonempty, all its elements are Steiner symmetric and
are steady solutions of 2D Euler which propagate with constant
speed λ.

2 For each nonnegative ω0 ∈ Lp
c(Π), with p > 2, there exists Λ > 0

such that for any 0 < λ < Λ, Σλ ⊆ R(ω0), so that the hypothesis of
the Theorem are satisfied.

3 Σλ is a compact set of functions in L2, together with their
translates.

4 For the special case of Lamb’s circular vortex the maximizer of
E − λI includes the function 0, which means this case is not
covered by our result.
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the proof, 1

The argument follows P. L. Lions’ concentration-compactness
framework, starting with a maximizing sequence ωn. The
concentration-compactness provides three possibilities: compactness,
vanishing and dichotomy.

Compactness means the mass of ωn stays concentrated in a single
lump, which is what we require, whereas vanishing amounts to mass
disappearing to infinity and dichotomy is mass breaking into lumps.

To avoid vanishing, the hypothesis that the maximizers are not zero,
plus some coercivity of the energy functional are used.

Compactness, plus some confinement analysis shows that the
approximating sequence converges strongly in L2 to someone in Σλ,
which basically is enough to conclude.
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the proof, 2

Steiner symmetrization Let f ∈ L1(R). There exists a rearrangement
f ∗ of f which is even and non-increasing for x > 0.

For a nonnegative function ω ∈ L1(Π), we define ω∗ as the Steiner
symmetrization for each fixed x2. Clearly, ω∗ is a rearrangement of ω
and I[ω] = I[ω∗]. In addition, a symmetrization inequality holds:
E(ω∗) ≥ E(ω).

These facts, applied to the approximation sequence ωn show no
dychotomy and explains why maximizers are Steiner symmetric.
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Comments and conclusions

This is not a actually a nonlinear stability result, but the fact that
small perturbations of a steady profile stays near Σλ in L2 implies
that approximate coherence is mantained forever, something
non-obvious and physically interesting.

It seems likely that, typically, Σλ only contains the translates of a
single profile. This is the case for Lamb’s circular vortex, but some
new idea is required to proceed further.
Case p ≤ 2 and vortex sheets?
Another possible line of investigation is to adapt these ideas to
smoke rings.
THANK YOU!
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