Primeira Prova - Integração

Semestre 2018/2 - Prof. Ricardo M. S. Rosa

30 de outubro de 2018

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

1º Questão: Considere a medida de Lebesgue m e a sequência $(E_n)_{n\in\mathbb{N}}$ dos conjuntos

$$E_n = \bigcup_{j=0}^{2^{n-1}-1} \left[\frac{2j}{2^n}, \frac{2j+1}{2^n} \right].$$

- (1) Determine explicitamente o conjunto $\liminf_{n\to\infty} E_n$.
- (2) Determine explicitamente o conjunto $\limsup_{n\to\infty} E_n$.
- (3) Dado um intervalo [a, b] com $0 \le a < b \le 1$, mostre que

$$\lim_{n \to \infty} m([a, b] \cap E_n) = \frac{b - a}{2}.$$

(4) Dado um conjunto mensurável $A \subset [0,1]$ qualquer, mostre que

$$\lim_{n\to\infty} m(A\cap E_n) = \frac{1}{2}m(A).$$

2º. Questão: Dada uma função real f definida no intervalo [0,1], considere a função f^* definida por

$$f^{\star}(x) = \sup_{x \le y \le 1} f(y), \quad \forall x \in [0, 1].$$

- (1) Mostre que se $(\varphi_n)_{n\in\mathbb{N}}$ é uma sequência de funções definidas em [0,1] que converge pontualmente para f e $\varphi_n(x) \leq f(x)$, para todo $x \in [0,1]$ e todo $n \in \mathbb{N}$, então a sequência $(\varphi_n^*)_{n\in\mathbb{N}}$ converge pontualmente para f^* .
- (2) Mostre que se φ é uma função simples em [0,1], então φ^{\star} é uma função escada.
- (3) Mostre que se f é mensurável e não-negativa, então f^* também é mensurável.
- (4) Dê um exemplo de uma função real f em [0,1] e de uma sequência $(\varphi_n)_{n\in\mathbb{N}}$ de funções reais em [0,1] tais que a sequência converge pontualmente para f mas $(\varphi_n^{\star})_{n\in\mathbb{N}}$ não converge para f^{\star} em um conjunto de medida positiva.
- **3º** Questão: Seja $E \subset [0,1]$ um subconjunto mensurável em relação à medida de Lebesgue m em \mathbb{R} e seja a > 0. Considere a função f dada por $f(t) = m(E \cap [t, t+a])$, para todo $t \in [0,1]$.
 - (1) Mostre que f é absolutamente contínua em [0,1].
 - (2) Escreve uma decomposição de f da forma f = g h onde g e h são não-decrescentes.
 - (3) Mostre que $f' = \chi_{E-a} \chi_E$ quase sempre, onde χ_{E-a} e χ_E são as funções características dos respectivos conjuntos $E a = \{t a; t \in E\}$ e E.